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LETTER TO THE EDITOR 

Finite-size corrections for spin4 Heisenberg chains and 
conformal properties 

B-D Dorfel 
Sektion Physik, Humboldt-Universitat zu Berlin, PSF 1297, Berlin 1086, German 
Democratic Republic 

Received 14 October 1988 

Abstract. We compare recent results on finite-size corrections for the isotropic (XXX) 
Heisenberg chain (and its integrable generalisations) with former numerical and analytic 
calculations. For the ground state and its lowest excitations, leading and non-leading terms 
are considered. Our analysis confirms the predictions of conformal invariance and sheds 
some new light on the fine structure of finite-size corrections. 

The recent interest in finite-size corrections of exactly integrable models is mainly due 
to the fact that they are closely related to conformal invariance, which was discovered 
by Cardy (1984, 1986) and others (Blote et a1 1986, Affleck 1986). Strictly speaking, 
this is true for the corrections in the critical region only, where they are power-like 
for such quantities as energy, etc. In the non-critical region they show an exponential 
behaviour, in accordance with the fact that there is a finite mass gap in the excitation 
spectrum. 

Using the concept of conformal invariance, some finite-size corrections can be 
proposed. On the other hand, independent analytic methods have been developed to 
calculate them for some models (Woynarovich and Eckle 1987, Hamer et a1 1987). 

Therefore it seems to be reasonable to re-examine some of the numerical and 
analytic results we obtained previously by solving the Bethe ansatz equations ( BAE). 
Unfortunately, some of our results have not been noticed by other authors so far, 
though a comparison should be worthwhile. In this letter we deal with the Heisenberg 
antiferromagnetic spin chain 

or its integrable generalisation to spin S 

where P is a polynomial of degree 2s (see e.g. Babujian 1983), and we have set J =  1. 
The mass gap of these models is zero, so we are really in the critical region. From the 
general formula 

(3) AE&N) = E ( N ) -  0 E,=-Tcv/~N 
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of Blote et a1 (1986) and AWeck (1986), the latter obtained c = 3 S / ( S + l )  for the 
central charge and v = 7r/2 for the ‘effective’ velocity (from low-energy dispersion 
relation), transforming (3) into 

The same considerations used to obtain equation (3) lead to the specific heat capacity 
for low temperatures 

This value was first calculated by solving the BAE by Babujian (1983). It is interesting 
to note that he was only able to give a rather complicated expression for CN when 
S s i  and the calculation of the result relied completely on the basis of the string 
hypothesis (sH),  which was later shown to be only ‘partly’ true (Avdeev and Dorfel 
1985a). On one hand, one may argue that thermodynamics is correctly given by SH; 

on the other hand, the low-temperature limit favours the lower part of the spectrum 
where SH is definitely not valid. The picture becomes even more puzzling if one 
remembers the result of Alcaraz and Martins (19881, who showed that for S = 1 the 
SH would imply the incorrect result 

N A E ~ ” =  -r2/12. (6) 
For S =+, in the ground state the strings are real roots and (4) confirms the former 
results of Avdeev and Dorfel (1985b) and Hamer (1985). 

For S a  1, the SH predicts for the ground state N / 2  strings of length 2s. Avdeev 
and Dorfel (1985~) have solved the BAE numerically and obtained deformed strings 
(of order l/iV). In table 1 we present their extrapolated energy corrections obtained 
from calculations up to S N S  128 compared with AEA” from equation (4). 

Table 1 clearly confirms equations (4) and (3) and the concept of conformal 
invariance. For higher S, the deviations are due to the fact that extrapolation requires 
higher N than we were able to use. 

Furthermore, we have compared the ground-state energies of Alcaraz and Martins 
(1988) for S = 1, published up to N = 84, with those of Avdeev and Dorfel (19854, 
which have been calculated up to N = 128, and obtained complete agreement. 

Table 1. The extrapolated finite-size corrections lim,,,(NA.E~”) of the ground state 
compared with the theoretical prediction (NAE&N))lheor= - r 2 S / 4 ( S +  1) from S =  1 to 
s=;. 

f 
1 
5 
2 
5 
7 
3 

4 
I 

3 

I 
9 

0.8230 
I .235 
1.484 
1.65 
1.77 
1.86 
1.93 
1.98 
2.03 

0.8225 
1.2337 
1.4804 
1.6449 
1.7624 
1.8506 
1.9191 
1.9740 
2.0188 
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A new analytic method for calculating finite-size corrections for solutions of the 
BAE was introduced by Woynarovich and Eckle (1987) using Wiener-Hopf integration. 
This powerful method is independent of the predictions of conformal invariance and 
provides us with an algorithm for obtaining nearly all interesting corrections of the 
low-energy spectrum for S = i. The string deformation for S 3 1 makes its generalisation 
a rather formidable task (for an attempt see Avdeev and Dorfel(1985b). It is therefore 
useful to observe how their results improve the coincidence with former numerical 
results. 

Woynarovich and Eckle have calculated the first non-leading corrections to (4): 

In table 2 we compare this analytic prediction with numerical results of Avdeev and 
Dorfel (1985b). 

Table 2. The exact ground-state energy correction multiplied by ( - N )  and the analytic 
prediction from equation (7) .  

N - N A E ~  (numerical) - N A E i N )  (theory) 

4 
6 
8 

10 
16 
32 
64 

130 
256 

0.0096 
0.8634 
0.8473 
0.8397 
0.8311 
0.8262 
0.8244 
0.8237 
0.8233 

0.9284 
0.8716 
0.8537 
0.8456 
0.8357 
0.8292 
0.8264 
0.8249 
0.8241 

The deviations for large N fit with the next correction of order O(l/ ln4 N ) .  It is 

The extended version of Hamer et a1 (1987) gives the possibility of estimating the 

Remember that for the density 

surprising that (7) already works rather well for N s 10. 

root of largest magnitude A and the density a N ( A ) .  

a,(h) = 1/2 cosh(rA) (8) 

one has 

1 2N 
A,, = - In - 

7 r r  (9) 

and 

After a little algebra one finds 

a N ( A )  =-% 48 N (1 1 + E) [ 1 +O( L)] ln2 N 
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and 

1 2 N 3 3 + m ) [  1 + 0  ( - 1 )] 
A=-ln(J= 7T 7Tl 3 5 + d x i E 3  in3 N 

= Ao+ A +  o (A) 
where A = 0.013 8113. 

This fits very well with former numerical results which are presented in table 3. 
The parameter A sets some kind of a new scale, which manifests itself in all higher 

corrections to uN(A) for A B A. In this region a splitting 

u ~ ( A ) = c ~ A ) + A u ~ ( A )  (13) 

makes no sense for perturbation theory, because the second part becomes much larger 
than the first part (the opposite of the situation for small JAl<c A). The complicated 
structure of A and its cumbersome calculation give us no hint of a physical interpretation 
of that scale, as we have for the energy correction in (3) in the form of the central charge. 

Table 3. The largest root A (numerical result) compared with A. and Ao+ A for two different 
values of N. 

N = l O  N = 256 

& 0.589 192 1.621 342 
A 0 + A  0.603 004 1.635 153 
A 0.598 087 1.635 314 

Concluding this part of our letter we compare uN(A) = 0.005 797 47 for N = 256 
from (11) with its numerical value 

~N(A)=0 .005  789 41. 

The coincidence here is worse, but can still be explained by the corrections in (1 1 )  
which come from the terms dropped in (18) in Woynarovich and Eckle (1987). 

Now it is interesting to compare the results concerning the lowest excited states 
for S = f and S = 1.  Let us start with the standard XXX model. Though some results 
were already obtained by Alcaraz et a1 (1987), a general solution of the problem was 
presented by Woynarovich (1987). Solving the BAE, he was able to calculate in an 
analytic way the leading order of momenta and energies of all low-lying states and 
thus obtained the scaling dimensions of the relevant operators already predicted by 
conformal invariance. One may then ask how his results fit with the former analysis 
of Destri and Lowenstein (1982) and of Babelon et a1 (1983). A good comparison can 
be made with the case where no complex A are present in the solutions of the BAE. 
In our normalisation the formulae of Woynarovich (which we were able to confirm) 
take the form 
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with 

H++ H - =  H =2L. 

Here L is the spin of the state and H +  ( H - )  is the number of holes near A (-A). 
The integers ni are defined by ni = JmaX T Jh. Therefore the values in the round brackets 
in (14) and (15) are non-negative integers, measuring the distance of the holes from 
their maximum positions. Though it is clear that the analysis of Destri and Lowenstein 
(1982) cannot be applied, the deviations are not so strong. They consist mainly in the 
fact that additivity for the energies and momenta of holes is no longer valid, which 
consequently must violate the dispersion relation. The violating terms proportional to 
( H + ) 2  (instead of H + )  can be thought to contain an energy of ‘interaction’ for the 
holes missed in former analysis. The ‘interaction’ of holes on different ends is o( 1/ N) 
and is therefore not present in (14). If H +  and H -  are fixed, additivity is restored, at 
least as long as the holes do not move too far away from the ends. 

On the basis of a generalisation of the methods of Destri and Lowenstein (1982), 
Avdeev and Dorfel (1985a, c) have estimated for general S the energy of the lowest 
triplet state (its momentum is n)  

where they used u,(A) and the concept of a hole-induced density correction. Because 
H +  = H -  = 1, it is not surprising that the leading term coincides with the correct answer 
in (14) (we have no ‘interaction’ of holes). But it is worthwhile noting that the first 
non-leading coefficient in this special case is correct, too. This can be seen from the 
results of Woynarovich and Eckle (1987), where they have obtained for the lowest 
states with H +  = H -  = L 

The question as to whether this is purely accidental or a result of some deeper symmetry 
requires further work. 

In the case of complex A, Woynarovich did not publish his findings for energy and 
momentum in detail, because he was mainly interested in reproducing the tower 
structure required by conformal invariance. Therefore we cannot follow the process 
by which wide pairs, strings and quartets violate additivity, as should be expected. 
For the lowest singlet (except the ground state) he has obtained the same energy as 
for the lowest triplet (to leading order), which was also predicted by Avdeev and 
Dorfel (1985~). 

For S = 1 a general analysis is still lacking due to the string deformations. 
On the basis of conformal invariance and numerical results, Alcaraz and Martins 

(1988) suggested for the lowest excitations with spin L 
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For L = 1 their numerical results up to N = 84 coincide with those of Avdeev and 
Dorfel (198%). We just may add to their values of X ,  (LHS of (19) multiplied by 
N/T*) the result X, = 0.344 7143 for N = 126. Non-deformed strings would, instead 
of (19), imply 

(for L = 1 see (17)) which yields 

This formula is also true for L = 0. The change in sign is connected with the fact that 
for an even number of holes on one end (even L) the strings stretch, and for an odd 
number they shrink, which has been established numerically by Avdeev and Dorfel 
(1985~).  

The author is indebted to M Karowski for useful discussions. 
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